
Elastic Computing with R and Redis

http://goo.gl/G9VAA

What does "elastic" mean?

● Computational resources can be added or
removed at any time.

● Running computations benefit from added
resources automatically.

● Computations on de-allocated resources are
rescheduled automatically.

Why Elastic?

● Bursty/intermittent computational workloads
● Periodic resource availability
● Resource contention and dynamic reallocation

Components

Interactive R Session or
Main Program

Redis Server

doRedis
Workers

Toplogy

The components can:

● all be on a single computer
● all be on separate computers
● a mix of the above
● connected by intra- or inter-networks

(deparmental network, EC2, Azure, etc.)

doRedis and EC2

Ready to roll AMI available. Linux magic is in the

redis-worker-installer.sh

file distributed with the package (a generic
doRedis service for any LSB system).

Windows version also available from
https://github.com/bwlewis/doRedisWindowsService.

https://github.com/bwlewis/doRedisWindowsService
https://github.com/bwlewis/doRedisWindowsService

EC2 Example I: Start doRedis workers

● Launch one new instance--this can serve as
the Redis host and as a worker node.

● Obtain the IP address of the new instance.
● Additional instances may be specified at any

time by supplying EC2 user-data:

host: <ip address of redis>
queue: <job queue name>
port: <redis port if not std.>

EC2 Example II: Example program

library("doRedis"); library("quantmod")

SP500 <- getSymbols("^GSPC",auto.assign=FALSE)
GOOG <- getSymbols("GOOG",auto.assign=FALSE)
GOOG <- diff(log(GOOG[,6])); SP500 <- diff(log(SP500[,6]))

Estimate beta from the data:
beta = coef(lm(GOOG ~ SP500))[2]

Bootstrap to get a sense of variation:
n <- length(GOOG)
registerDoRedis(queue="RJOBS", host="HOST")
b <- foreach(j=1:5000,.combine=c,.packages="xts") %dopar% {
 i <- sample(n,n,replace=TRUE)
 coef(lm(GOOG[i] ~ SP500[i]))[2]
}

hist(b,col="yellow",main="bootstrapped beta",xlab="")
abline(v=beta,col="blue",lwd=2)

Example program output

This example is from Pat Burns' website: http://www.burns-stat.com/

http://www.burns-stat.com/

doRedis tips and tricks

Redis server configuration (redis.conf)

● Comment out the bind line to listen on all interfaces:

bind 127.0.0.1

● Set the timeout to zero to let workers wait indefinitely:

timeout 0

● chunkSize option
Preferred number of loop iterations per job

● redisWorker iter and timeout options
Number of jobs to execute before exiting/time
to wait before exiting when queue is removed.

● set.seed.worker function
Fine control over worker RNG state--see also
the doRNG package and others.

setChunkSize, setExport, setPackages implement global ways
to set some options, useful with plyR and others...

Caveat!

● Distributing data to workers
through Redis...

○ Can be a bottleneck.
○ Redis largest value allowed is 512MB.

One solution: Access big data from within
parallel jobs if possible. Easy to set this up to
happen just once per worker even if many jobs
are processed.

Revised example program

library("doRedis");

n <- length(GOOG)
registerDoRedis(queue="RJOBS", host="HOST")

b <- foreach(j=1:5000,.combine=c, .packages="quantmod") %
dopar% {

 if(!exists("GOOG",envir=globalenv())) {
 S <- getSymbols("^GSPC",auto.assign=FALSE)
 G <- getSymbols("GOOG",auto.assign=FALSE)
 assign("GOOG",diff(log(GOOG[,6])),envir=globalenv())
 assign("SP500",diff(log(SP500[,6])),envir=globalenv())
 }

 i <- sample(n,n,replace=TRUE)
 coef(lm(GOOG[i] ~ SP500[i]))[2]
}

foreach tips and tricks

Nesting (parallel loop unrolling)

library("doRedis")
registerDoRedis("RJOBS")
startLocalWorkers(n=1,queue="RJOBS")

Use %:% to nest foreach loops. This trivial example
creates
one set of 15 tasks:

foreach(x=0:2) %:%
 foreach(y=1:5,.combine=c) %dopar% { x+y }

[[1]]
[1] 1 2 3 4 5

[[2]]
[1] 2 3 4 5 6

[[3]]
[1] 3 4 5 6 7

Parallel list comprehensions

Use %:% and when to form list comprehensions. Conditions
are evaluated in parallel, which can be an advantage
if there is a huge amount of data to evaluate.

foreach(x=0:2) %:%
 foreach(y=1:5,.combine=c) %:%
 when(x<y) %dopar% {x+y}

[[1]]
[1] 1 2 3 4 5

[[2]]
[1] 3 4 5 6

[[3]]
[1] 5 6 7

On CRAN

development version at:

https://github.com/bwlewis/doRedis

https://github.com/bwlewis/doRedis
https://github.com/bwlewis/doRedis

