Elastic Computing with R and Redis

http://goo.gl/GOVAA

What does "elastic" mean?

. Computational resources can be added or
removed at any time.

. Running computations benefit from added
resources automatically.

. Computations on de-allocated resources are
rescheduled automatically.

Why Elastic?

. Bursty/intermittent computational workloads
. Periodic resource availability
. Resource contention and dynamic reallocation

doRedis

Components ot

Redis Server

Interactive R Session or
Main Program

Toplogy

The components can:

. all be on a single computer
. all be on separate computers
. a mix of the above

. connected by intra- or inter-networks
(deparmental network, EC2, Azure, etc.)

doRedis and EC2

Ready to roll AMI available. Linux magic is in the

redlis-worker—-installer.sh

file distributed with the package (a generic
doRedis service for any LSB system).

Windows version also available from
https://qgithub.com/bwlewis/doRedisWindowsService.

https://github.com/bwlewis/doRedisWindowsService
https://github.com/bwlewis/doRedisWindowsService

EC2 Example |: Start doRedis workers

. Launch one new instance--this can serve as
the Redis host and as a worker node.

. Obtain the IP address of the new instance.

. Additional instances may be specified at any
time by supplying EC2 user-data:

host: <i1p address of redis>
queue: <Jjob gqueue name>
port: <redis port 1f not std.>

EC2 Example Il: Example program

library ("doRedis"); library("quantmod")

SP500 <- getSymbols (""GSPC",auto.assign=FALSE)

GOOG <- getSymbols ("GOOG",auto.assign=FALSE)

GOOG <- diff(log(GOOG[,6])); SP500 <- diff(log(SP500[,06]))

Estimate beta from the data:
beta = coef (1Im(GOOG ~ SP500)) [2]

Bootstrap to get a sense of variation:

n <- length (GOOG)

registerDoRedis (queue="RJOBS", host="HOST")

b <- foreach(jJ=1:5000, .combine=c, .packages="xts") %dopar$ {
1 <- sample(n,n, replace=TRUE)
coef (Im(GOOG[1] ~ SP500[1])) [2]

}

hist (b,col="yellow",main="bootstrapped beta",xlab="")
abline (v=beta,col="blue", lwd=2)

Example program output

bootstrapped beta

100 120

&0
|

Frequency
G0
l

0.80 0.85 0.90 0.95 1.00

This example is from Pat Burns' website: http://www.burns-stat.com/

http://www.burns-stat.com/

doRedis tips and tricks

Redis server configuration (redis.conf)

. Comment out the bind line to listen on all interfaces:

bind 127.0.0.1

. Set the timeout to zero to let workers wait indefinitely:

timeout O

. chunkSize option
Preferred number of loop iterations per job

. redisWorker iter and timeout options
Number of jobs to execute before exiting/time
to wait before exiting when queue is removed.

. set.seed.worker function
Fine control over worker RNG state--see also
the doRNG package and others.

setChunkSize, setExport, setPackages implement global ways
to set some options, useful with plyR and others...

Caveat!

. Distributing data to workers
through Redis...

- Can be a bottleneck.
- Redis largest value allowed is 512MB.

One solution: Access big data from within
parallel jobs if possible. Easy to set this up to
happen just once per worker even if many jobs
are processed.

Revised example program

library ("doRedis") ;

n <- length (GOOG)

registerDoRedis (queue="RJOBS", host="HOST")

b <- foreach (j=1:5000, .combine=c, .packages="quantmod") %
dopar%s {

if (!exists ("GOOG" ,envir=globalenv())) {
S <- getSymbols ("*GSPC" ,auto.assign=FALSE)
G <- getSymbols ("GOOG",auto.assign=FALSE)
assign ("GOOG" ,diff (log (GOOG[,6])) ,envir=globalenv())
assign ("SP500" ,diff (log(SP500[,6])) ,envir=globalenv())

}

1 <- sample(n,n,replace=TRUE)
coef (Im(GOOG[1i] ~ SP500[1]))[2]

foreach tips and tricks

Nesting (parallel loop unrolling)

library ("doRedis")
reglisterDoRedis ("RJOBS")
startLocalWorkers (n=1, queue="RJOBS")

Use %:% to nest foreach loops. This trivial example
creates
one set of 15 tasks:
foreach (x=0:2) %:%
foreach (y=1:5, .combine=c) %dopar% { x+ty }

[[3]]
[1] 3 4 5 6 7

Parallel list comprehensions

Use %:% and when to form list comprehensions. Conditions
are evaluated in parallel, which can be an advantage
1f there is a huge amount of data to evaluate.

[©) [©)

foreach (x=0:2) %:%
foreach(y=1:5, .combine=c) %:%
when (x<y) %dopar%s {x+y}

On CRAN

development version at:

https.//github.com/bwlewis/doRedis

https://github.com/bwlewis/doRedis
https://github.com/bwlewis/doRedis

